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Let a,b, and c be the lengths of the sides opposite vertices A,B, and C, respectively,

a nonobtuse triangle. Let ha,hb, and hc be the corresponding lengths of the altitudes.

Show that: ha
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Solution by Arkady Alt, San Jose ,California, USA.

First we will prove that in any triangle with sidelengths a,b,c holds inequality

(1) a,b,c  1
a2

 1
b2

 1
c2

 9, where a,b,c : 2ab  a2.

Proof.

Let x : s  a,y : s  b, z : s  cwhere s is semiperimeter of the triangle and let

p :  xy,q : xyz. Then x,y, z  0 and assuming s  1 (due homogeneity of (1))

we obtain x  y  z  1,a  1  x,b  1  y,c  1  z,a  2,ab 
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inequality (1) becomes
4p 1  p2  4q

p  q2
 9.

Since 3p  3 xy   x
2
 1 and 9q  4p  1 (normalized by x  1
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If p  0,1/4 then
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Thus, equality occurs iff p  1/3 and q 
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that is in original notation iff a  b  c.

Coming back to the original problem in case of acute triangle, by replacing a,b,c

in inequality (1) with a2,b2,c2 we obtain, since a2,b2,c2  16F2 , where F is area of

the triangle, that 16F2  1
a4

 9   4a2ha
2

a4
 9
4

  ha
2

a2
 9
4
.

In the case ABC is right angled with C  90, we have
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Thus, in inequality of the problem equality occurs iff the triangle is equilateral or

isosceles right angled.


