Lower bound for sum of squares of ratios altitudes to sidelengths

https://www.linkedin.com/feed/update/urn:li:activity:7167529633465155584?
utm_source=share\&utm_medium=member_desktop
Let a, b, and c be the lengths of the sides opposite vertices A, B, and C, respectively, a nonobtuse triangle. Let h_{a}, h_{b}, and h_{c} be the corresponding lengths of the altitudes.
Show that: $\quad\left(\frac{h_{a}}{a}\right)^{2}+\left(\frac{h_{b}}{b}\right)^{2}+\left(\frac{h_{c}}{c}\right)^{2} \geq \frac{9}{4}$.

Solution by Arkady Alt, San Jose ,California, USA.

First we will prove that in any triangle with sidelengths a, b, c holds inequality
(1) $\Delta(a, b, c) \cdot\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \geq 9$, where $\Delta(a, b, c):=2 \sum a b-\sum a^{2}$.

Proof.
Let $x:=s-a, y:=s-b, z:=s-c$ where s is semiperimeter of the triangle and let
$p:=\sum x y, q:=x y z$. Then $x, y, z>0$ and assuming $s=1$ (due homogeneity of (1))
we obtain $x+y+z=1, a=1-x, b=1-y, c=1-z, \sum a=2, \sum a b=$
$\sum(1-x)(1-y)=\sum(z+x y)=1+p, \sum a^{2}=\left(\sum a\right)^{2}-2 \sum a b=2(1-p)$,
$a b c=(1-x)(1-y)(1-z)=p-q, \sum a^{2} b^{2}=\left(\sum a b\right)^{2}-2 a b c \sum a=$
$(1+p)^{2}-4(p-q)=(1-p)^{2}+4 q, \Delta(a, b, c)=4\left(\sum a b\right)^{2}-\left(\sum a\right)^{2}=4 p$ and
inequality (1) becomes $\frac{4 p\left((1-p)^{2}+4 q\right)}{(p-q)^{2}} \geq 9$.
Since $3 p=3 \sum x y \leq\left(\sum x\right)^{2}=1$ and $9 q \geq 4 p-1$ (normalized by $\sum x=1$
Schure's inequality $\sum x(x-y)(x-z) \geq 0$ in p, q notation) then $q \geq \frac{4 p-1}{9}$ and noting that $\frac{(1-p)^{2}+4 q}{(p-q)^{2}}$ increases by $q \in(0, p / 9](9 q=9 x y z \leq$ $\left.\left(\sum x\right) \cdot\left(\sum x y\right)=p\right)$ we obtain for $p \in(1 / 4,1 / 3]$ that $\frac{4 p\left((1-p)^{2}+4 q\right)}{(p-q)^{2}}-9 \geq \frac{4 p\left((1-p)^{2}+4 \cdot \frac{4 p-1}{9}\right)}{\left(p-\frac{4 p-1}{9}\right)^{2}}-9=\frac{9(4 p-1)(1-3 p)^{2}}{(5 p+1)^{2}} \geq 0$.
If $p \in(0,1 / 4]$ then $\frac{4 p\left((1-p)^{2}+4 q\right)}{(p-q)^{2}}-9>\frac{4 p\left((1-p)^{2}+4 \cdot 0\right)}{(p-0)^{2}}=\frac{(4-p)(1-4 p)}{p}>0$.
Thus, equality occurs iff $p=1 / 3$ and $q=\frac{4 \cdot(1 / 3)-1}{9}=\frac{1}{27} \Leftrightarrow x=y=z=1 / 3$
that is in original notation iff $a=b=c$.
Coming back to the original problem in case of acute triangle, by replacing (a, b, c)
in inequality (1) with $\left(a^{2}, b^{2}, c^{2}\right)$ we obtain, since $\Delta\left(a^{2}, b^{2}, c^{2}\right)=16 F^{2}$, where F is area of the triangle, that $16 F^{2} \cdot \sum \frac{1}{a^{4}} \geq 9 \Leftrightarrow \sum \frac{4 a^{2} h_{a}^{2}}{a^{4}} \geq \frac{9}{4} \Leftrightarrow \sum \frac{h_{a}^{2}}{a^{2}} \geq \frac{9}{4}$.
In the case $\triangle A B C$ is right angled with $C=90^{\circ}$, we have
$c^{2}=a^{2}+b^{2}, h_{a}=b, h_{b}=a, h_{c}=\frac{a b}{c}$
and $\left(\frac{h_{a}}{a}\right)^{2}+\left(\frac{h_{b}}{b}\right)^{2}+\left(\frac{h_{c}}{c}\right)^{2}=\left(\frac{b}{a}\right)^{2}+\left(\frac{a}{b}\right)^{2}+\left(\frac{a b}{a^{2}+b^{2}}\right)^{2}=\frac{a^{4}+b^{4}}{a^{2} b^{2}}+\frac{a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}$.

Since $\left(a^{2}+b^{2}\right)^{2} \leq 2\left(a^{4}+b^{4}\right)$ then, denoting $t:=\frac{a^{4}+b^{4}}{a^{2} b^{2}} \geq 2$ we obtain that $\frac{a^{4}+b^{4}}{a^{2} b^{2}}+\frac{a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}} \geq t+\frac{1}{2 t} \geq \frac{9}{4}$, because $t+\frac{1}{2 t}-\frac{9}{4}=\frac{(4 t-1)(t-2)}{4 t} \geq 0$. Thus, in inequality of the problem equality occurs iff the triangle is equilateral or isosceles right angled.

